Gjsify LogoGjsify Logo

A #GSocketService is an object that represents a service that is provided to the network or over local sockets. When a new connection is made to the service the #GSocketService::incoming signal is emitted.

A #GSocketService is a subclass of #GSocketListener and you need to add the addresses you want to accept connections on with the #GSocketListener APIs.

There are two options for implementing a network service based on #GSocketService. The first is to create the service using g_socket_service_new() and to connect to the #GSocketService::incoming signal. The second is to subclass #GSocketService and override the default signal handler implementation.

In either case, the handler must immediately return, or else it will block additional incoming connections from being serviced. If you are interested in writing connection handlers that contain blocking code then see #GThreadedSocketService.

The socket service runs on the main loop of the [thread-default context][g-main-context-push-thread-default-context] of the thread it is created in, and is not threadsafe in general. However, the calls to start and stop the service are thread-safe so these can be used from threads that handle incoming clients.

Hierarchy

Index

Constructors

Properties

active: boolean

Whether the service is currently accepting connections.

gTypeInstance: TypeInstance
listenBacklog: number
parentInstance: SocketListener
name: string

Methods

  • Blocks waiting for a client to connect to any of the sockets added to the listener. Returns a #GSocketConnection for the socket that was accepted.

    If source_object is not %NULL it will be filled out with the source object specified when the corresponding socket or address was added to the listener.

    If cancellable is not %NULL, then the operation can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned.

    Parameters

    • cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    Returns [SocketConnection, GObject.Object]

  • This is the asynchronous version of g_socket_listener_accept().

    When the operation is finished callback will be called. You can then call g_socket_listener_accept_finish() to get the result of the operation.

    Parameters

    Returns void

  • Blocks waiting for a client to connect to any of the sockets added to the listener. Returns the #GSocket that was accepted.

    If you want to accept the high-level #GSocketConnection, not a #GSocket, which is often the case, then you should use g_socket_listener_accept() instead.

    If source_object is not %NULL it will be filled out with the source object specified when the corresponding socket or address was added to the listener.

    If cancellable is not %NULL, then the operation can be cancelled by triggering the cancellable object from another thread. If the operation was cancelled, the error %G_IO_ERROR_CANCELLED will be returned.

    Parameters

    • cancellable: Gio.Cancellable

      optional #GCancellable object, %NULL to ignore.

    Returns [Gio.Socket, GObject.Object]

  • This is the asynchronous version of g_socket_listener_accept_socket().

    When the operation is finished callback will be called. You can then call g_socket_listener_accept_socket_finish() to get the result of the operation.

    Parameters

    Returns void

  • Creates a socket of type type and protocol protocol, binds it to address and adds it to the set of sockets we're accepting sockets from.

    Note that adding an IPv6 address, depending on the platform, may or may not result in a listener that also accepts IPv4 connections. For more deterministic behavior, see g_socket_listener_add_inet_port().

    source_object will be passed out in the various calls to accept to identify this particular source, which is useful if you're listening on multiple addresses and do different things depending on what address is connected to.

    If successful and effective_address is non-%NULL then it will be set to the address that the binding actually occurred at. This is helpful for determining the port number that was used for when requesting a binding to port 0 (ie: "any port"). This address, if requested, belongs to the caller and must be freed.

    Call g_socket_listener_close() to stop listening on address; this will not be done automatically when you drop your final reference to listener, as references may be held internally.

    Parameters

    Returns [boolean, SocketAddress]

  • Listens for TCP connections on any available port number for both IPv6 and IPv4 (if each is available).

    This is useful if you need to have a socket for incoming connections but don't care about the specific port number.

    source_object will be passed out in the various calls to accept to identify this particular source, which is useful if you're listening on multiple addresses and do different things depending on what address is connected to.

    Parameters

    • sourceObject: GObject.Object

      Optional #GObject identifying this source

    Returns number

  • Helper function for g_socket_listener_add_address() that creates a TCP/IP socket listening on IPv4 and IPv6 (if supported) on the specified port on all interfaces.

    source_object will be passed out in the various calls to accept to identify this particular source, which is useful if you're listening on multiple addresses and do different things depending on what address is connected to.

    Call g_socket_listener_close() to stop listening on port; this will not be done automatically when you drop your final reference to listener, as references may be held internally.

    Parameters

    • port: number

      an IP port number (non-zero)

    • sourceObject: GObject.Object

      Optional #GObject identifying this source

    Returns boolean

  • Adds socket to the set of sockets that we try to accept new clients from. The socket must be bound to a local address and listened to.

    source_object will be passed out in the various calls to accept to identify this particular source, which is useful if you're listening on multiple addresses and do different things depending on what address is connected to.

    The socket will not be automatically closed when the listener is finalized unless the listener held the final reference to the socket. Before GLib 2.42, the socket was automatically closed on finalization of the listener, even if references to it were held elsewhere.

    Parameters

    • socket: Gio.Socket

      a listening #GSocket

    • sourceObject: GObject.Object

      Optional #GObject identifying this source

    Returns boolean

  • Creates a binding between source_property on source and target_property on target.

    Whenever the source_property is changed the target_property is updated using the same value. For instance:

      g_object_bind_property (action, "active", widget, "sensitive", 0);
    

    Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.

    If flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: if target_property on target changes then the source_property on source will be updated as well.

    The binding will automatically be removed when either the source or the target instances are finalized. To remove the binding without affecting the source and the target you can just call g_object_unref() on the returned #GBinding instance.

    Removing the binding by calling g_object_unref() on it must only be done if the binding, source and target are only used from a single thread and it is clear that both source and target outlive the binding. Especially it is not safe to rely on this if the binding, source or target can be finalized from different threads. Keep another reference to the binding and use g_binding_unbind() instead to be on the safe side.

    A #GObject can have multiple bindings.

    Parameters

    • sourceProperty: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • targetProperty: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    Returns Binding

  • Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

    This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.

    Parameters

    • sourceProperty: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • targetProperty: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    • transformTo: TClosure<any, any>

      a #GClosure wrapping the transformation function from the source to the target, or %NULL to use the default

    • transformFrom: TClosure<any, any>

      a #GClosure wrapping the transformation function from the target to the source, or %NULL to use the default

    Returns Binding

  • close(): void
  • connect(sigName: "incoming", callback: SocketService_IncomingSignalCallback): number
  • connect(sigName: "notify::active", callback: ((...args: any[]) => void)): number
  • connect(sigName: "notify::listen-backlog", callback: ((...args: any[]) => void)): number
  • connect(sigName: string, callback: ((...args: any[]) => void)): number
  • emit(sigName: "incoming", sourceObject: GObject.Object, ...args: any[]): void
  • emit(sigName: "notify::active", ...args: any[]): void
  • emit(sigName: "notify::listen-backlog", ...args: any[]): void
  • emit(sigName: string, ...args: any[]): void
  • forceFloating(): void
  • This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

    Returns void

  • freezeNotify(): void
  • Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

    This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.

    Returns void

  • getData(key?: string): object
  • Gets a named field from the objects table of associations (see g_object_set_data()).

    Parameters

    • Optional key: string

      name of the key for that association

    Returns object

  • getProperty(propertyName?: string, value?: any): void
  • Gets a property of an object.

    The value can be:

    • an empty #GValue initialized by %G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
    • a #GValue initialized with the expected type of the property
    • a #GValue initialized with a type to which the expected type of the property can be transformed

    In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().

    Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.

    Parameters

    • Optional propertyName: string

      the name of the property to get

    • Optional value: any

      return location for the property value

    Returns void

  • getQdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • getv(names: string[], values: any[]): void
  • Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

    Parameters

    • names: string[]

      the names of each property to get

    • values: any[]

      the values of each property to get

    Returns void

  • isActive(): boolean
  • Check whether the service is active or not. An active service will accept new clients that connect, while a non-active service will let connecting clients queue up until the service is started.

    Returns boolean

  • isFloating(): boolean
  • notify(propertyName: string): void
  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    Parameters

    • propertyName: string

      the name of a property installed on the class of object.

    Returns void

  • Emits a "notify" signal for the property specified by pspec on object.

    This function omits the property name lookup, hence it is faster than g_object_notify().

    One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:

      enum
    {
    PROP_0,
    PROP_FOO,
    PROP_LAST
    };

    static GParamSpec *properties[PROP_LAST];

    static void
    my_object_class_init (MyObjectClass *klass)
    {
    properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
    0, 100,
    50,
    G_PARAM_READWRITE);
    g_object_class_install_property (gobject_class,
    PROP_FOO,
    properties[PROP_FOO]);
    }

    and then notify a change on the "foo" property with:

      g_object_notify_by_pspec (self, properties[PROP_FOO]);
    

    Parameters

    • pspec: ParamSpec

      the #GParamSpec of a property installed on the class of object.

    Returns void

  • off(sigName: "incoming", callback: SocketService_IncomingSignalCallback): EventEmitter
  • off(sigName: "notify::active", callback: ((...args: any[]) => void)): EventEmitter
  • off(sigName: "notify::listen-backlog", callback: ((...args: any[]) => void)): EventEmitter
  • off(sigName: string, callback: ((...args: any[]) => void)): EventEmitter
  • on(sigName: "incoming", callback: SocketService_IncomingSignalCallback, after?: boolean): EventEmitter
  • on(sigName: "notify::active", callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • on(sigName: "notify::listen-backlog", callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • on(sigName: string, callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • Parameters

    Returns EventEmitter

  • Parameters

    • sigName: "notify::active"
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • Parameters

    • sigName: "notify::listen-backlog"
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • Parameters

    • sigName: string
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • once(sigName: "incoming", callback: SocketService_IncomingSignalCallback, after?: boolean): EventEmitter
  • once(sigName: "notify::active", callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • once(sigName: "notify::listen-backlog", callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • once(sigName: string, callback: ((...args: any[]) => void), after?: boolean): EventEmitter
  • Parameters

    Returns EventEmitter

  • Parameters

    • sigName: "notify::active"
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • Parameters

    • sigName: "notify::listen-backlog"
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • Parameters

    • sigName: string
    • callback: ((...args: any[]) => void)
        • (...args: any[]): void
        • Parameters

          • Rest ...args: any[]

          Returns void

    • Optional after: boolean

    Returns EventEmitter

  • Increases the reference count of object.

    Since GLib 2.56, if GLIB_VERSION_MAX_ALLOWED is 2.56 or greater, the type of object will be propagated to the return type (using the GCC typeof() extension), so any casting the caller needs to do on the return type must be explicit.

    Returns GObject.Object

  • Increase the reference count of object, and possibly remove the [floating][floating-ref] reference, if object has a floating reference.

    In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.

    Since GLib 2.56, the type of object will be propagated to the return type under the same conditions as for g_object_ref().

    Returns GObject.Object

  • runDispose(): void
  • Releases all references to other objects. This can be used to break reference cycles.

    This function should only be called from object system implementations.

    Returns void

  • setBacklog(listenBacklog: number): void
  • Sets the listen backlog on the sockets in the listener. This must be called before adding any sockets, addresses or ports to the #GSocketListener (for example, by calling g_socket_listener_add_inet_port()) to be effective.

    See g_socket_set_listen_backlog() for details

    Parameters

    • listenBacklog: number

      an integer

    Returns void

  • setData(key: string, data?: object): void
  • Each object carries around a table of associations from strings to pointers. This function lets you set an association.

    If the object already had an association with that name, the old association will be destroyed.

    Internally, the key is converted to a #GQuark using g_quark_from_string(). This means a copy of key is kept permanently (even after object has been finalized) — so it is recommended to only use a small, bounded set of values for key in your program, to avoid the #GQuark storage growing unbounded.

    Parameters

    • key: string

      name of the key

    • Optional data: object

      data to associate with that key

    Returns void

  • setProperty(propertyName: string, value?: any): void
  • start(): void
  • Restarts the service, i.e. start accepting connections from the added sockets when the mainloop runs. This only needs to be called after the service has been stopped from g_socket_service_stop().

    This call is thread-safe, so it may be called from a thread handling an incoming client request.

    Returns void

  • stealData(key?: string): object
  • Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

    Parameters

    • Optional key: string

      name of the key

    Returns object

  • stealQdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

    void
    object_add_to_user_list (GObject *object,
    const gchar *new_string)
    {
    // the quark, naming the object data
    GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
    // retrieve the old string list
    GList *list = g_object_steal_qdata (object, quark_string_list);

    // prepend new string
    list = g_list_prepend (list, g_strdup (new_string));
    // this changed 'list', so we need to set it again
    g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
    }
    static void
    free_string_list (gpointer data)
    {
    GList *node, *list = data;

    for (node = list; node; node = node->next)
    g_free (node->data);
    g_list_free (list);
    }

    Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • stop(): void
  • Stops the service, i.e. stops accepting connections from the added sockets when the mainloop runs.

    This call is thread-safe, so it may be called from a thread handling an incoming client request.

    Note that this only stops accepting new connections; it does not close the listening sockets, and you can call g_socket_service_start() again later to begin listening again. To close the listening sockets, call g_socket_listener_close(). (This will happen automatically when the #GSocketService is finalized.)

    This must be called before calling g_socket_listener_close() as the socket service will start accepting connections immediately when a new socket is added.

    Returns void

  • thawNotify(): void
  • Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

    Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.

    It is an error to call this function when the freeze count is zero.

    Returns void

  • unref(): void
  • Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

    If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.

    Returns void

  • watchClosure(closure: TClosure<any, any>): void
  • This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

    Parameters

    • closure: TClosure<any, any>

      #GClosure to watch

    Returns void

  • compatControl(what: number, data: object): number
  • Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    • propertyName: string

      name of a property to look up.

    Returns ParamSpec

  • Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

    This function is meant to be called from the interface's default vtable initialization function (the class_init member of #GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface.

    If pspec is a floating reference, it will be consumed.

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface.

    • pspec: ParamSpec

      the #GParamSpec for the new property

    Returns void

  • Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    Returns ParamSpec[]

  • Creates a new #GSocketService with no sockets to listen for. New listeners can be added with e.g. g_socket_listener_add_address() or g_socket_listener_add_inet_port().

    New services are created active, there is no need to call g_socket_service_start(), unless g_socket_service_stop() has been called before.

    Returns SocketService

  • Creates a new #GSocketListener with no sockets to listen for. New listeners can be added with e.g. g_socket_listener_add_address() or g_socket_listener_add_inet_port().

    Returns SocketListener

  • Creates a new instance of a #GObject subtype and sets its properties.

    Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.

    Parameters

    • objectType: GType<unknown>

      the type id of the #GObject subtype to instantiate

    • parameters: GObject.Parameter[]

      an array of #GParameter

    Returns GObject.Object

Legend

  • Module
  • Object literal
  • Variable
  • Function
  • Function with type parameter
  • Index signature
  • Type alias
  • Type alias with type parameter
  • Enumeration
  • Enumeration member
  • Property
  • Method
  • Interface
  • Interface with type parameter
  • Constructor
  • Property
  • Method
  • Index signature
  • Class
  • Class with type parameter
  • Constructor
  • Property
  • Method
  • Accessor
  • Index signature
  • Inherited constructor
  • Inherited property
  • Inherited method
  • Inherited accessor
  • Protected property
  • Protected method
  • Protected accessor
  • Private property
  • Private method
  • Private accessor
  • Static property
  • Static method