the #VipsImage that this region is defined on
the #VipsRect of pixels that this region represents
Convenience: has an argument been assigned. Useful for bindings.
arg to fetch
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
Paints 0 into the valid part of reg
.
See also: vips_region_paint().
Copy from one region to another. Copy area r
from inside reg
to dest,
positioning the area of pixels at x,
y
. The two regions must have pixels
which are the same size.
See also: vips_region_paint().
destination region
#VipsRect of pixels you need to copy
postion of r
in dest
postion of r
in dest
Generate an area of pixels and return a copy. The result must be freed with g_free(). The requested area must be completely inside the image.
This is equivalent to vips_region_prepare(), followed by a memcpy. It is convenient for language bindings.
area of pixels to fetch
area of pixels to fetch
area of pixels to fetch
area of pixels to fetch
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Convenience: get the flags for an argument. Useful for bindings.
arg to fetch
Convenience: get the priority for an argument. Useful for bindings.
arg to fetch
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Fetch the object description. Useful for language bindings.
object
.description is only avaliable after _build(), which can be too
late. This function fetches from the instance, if possible, but falls back
to the class description if we are too early.
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Mark a region as containing invalid pixels. Calling this function means that the next time vips_region_prepare() is called, the region will be recalculated.
This is faster than calling vips_image_invalidate_all(), but obviously only affects a single region.
See also: vips_image_invalidate_all(), vips_region_prepare().
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Paints value
into reg
covering rectangle r
.
r
is clipped against
reg->
valid.
For int images, value
is
passed to memset(), so it usually needs to be 0 or 255. For float images,
value is cast to a float and copied in to each band element.
r
is clipped against
reg->
valid.
See also: vips_region_black().
Set the position of a region. This only affects reg->valid, ie. the way pixels are addressed, not reg->data, the pixels which are addressed. Clip against the size of the image. Do not allow negative positions, or positions outside the image.
position to move to
position to move to
vips_region_prepare() fills reg
with pixels. After calling,
you can address at least the area r
with VIPS_REGION_ADDR() and get
valid pixels.
vips_region_prepare() runs in-line, that is, computation is done by the calling thread, no new threads are involved, and computation blocks until the pixels are ready.
Use vips_sink_screen() to calculate an area of pixels in the background.
See also: vips_sink_screen(), vips_region_prepare_to().
Like vips_region_prepare(): fill reg
with the pixels in area r
.
Unlike vips_region_prepare(), rather than writing the result to reg,
the
pixels are written into dest
at offset x,
y
.
Also unlike vips_region_prepare(), dest
is not set up for writing for
you with vips_region_buffer(). You can
point dest
at anything, and pixels really will be written there.
This makes vips_region_prepare_to() useful for making the ends of
pipelines.
See also: vips_region_prepare(), vips_sink_disc().
region to write to
#VipsRect of pixels you need to be able to address
postion of r
in dest
postion of r
in dest
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Make VIPS_REGION_ADDR() on reg
go to dest
instead.
r
is the part of reg
which you want to be able to address (this
effectively becomes the valid field), (x,
y)
is the top LH corner of the
corresponding area in dest
.
Performs all clipping necessary to ensure that reg->
valid is indeed
valid.
If the region we attach to is moved or destroyed, we can be left with dangling pointers! If the region we attach to is on another image, the two images must have the same sizeof( pel ).
region to connect to
#VipsRect of pixels you need to be able to address
postion of r
in dest
postion of r
in dest
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Set object arguments from a string. The string can be something like "a=12", or "a = 12, b = 13", or "fred". The string can optionally be enclosed in brackets.
You'd typically use this between creating the object and building it.
See also: vips_object_set(), vips_object_build(), vips_cache_operation_buildp().
arguments as a string
Sets a property on an object.
the name of the property to set
the value
Write the pixels target
in to
from the x2 larger area in from
.
Non-complex uncoded images and LABQ only. Images with alpha (see
vips_image_hasalpha()) shrink with pixels scaled by alpha to avoid fringing.
method
selects the method used to do the 2x2 shrink.
See also: vips_region_copy().
destination region
#VipsRect of pixels you need to copy
method to use when generating target pixels
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
Unref all assigned output objects. Useful for language bindings.
After an object is built, all output args are owned by the caller. If something goes wrong before then, we have to unref the outputs that have been made so far. This function can also be useful for callers when they've finished processing outputs themselves.
See also: vips_cache_operation_build().
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
A small part of a #VipsImage.
valid
holds the left/top/width/height of the area of pixels that are available from the region.See also: VIPS_REGION_ADDR(), vips_region_new(), vips_region_prepare().