Adds a style class to context,
so later uses of the
style context will make use of this new class for styling.
In the CSS file format, a GtkEntry
defining a “search”
class, would be matched by:
entry.search { ... }
While any widget defining a “search” class would be matched by:
.search { ... }
class name to use in styling
Adds a style provider to context,
to be used in style construction.
Note that a style provider added by this function only affects
the style of the widget to which context
belongs. If you want
to affect the style of all widgets, use
[funcGtk
.StyleContext.add_provider_for_display].
Note: If both priorities are the same, a GtkStyleProvider
added through this function takes precedence over another added
through [funcGtk
.StyleContext.add_provider_for_display].
a GtkStyleProvider
the priority of the style provider. The lower it is, the earlier it will be used in the style construction. Typically this will be in the range between %GTK_STYLE_PROVIDER_PRIORITY_FALLBACK and %GTK_STYLE_PROVIDER_PRIORITY_USER
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Returns the scale used for assets.
Returns the state used for style matching.
This method should only be used to retrieve the GtkStateFlags
to pass to GtkStyleContext
methods, like
[methodGtk
.StyleContext.get_padding].
If you need to retrieve the current state of a GtkWidget
, use
[methodGtk
.Widget.get_state_flags].
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Returns %TRUE if context
currently has defined the
given class name.
a class name
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Removes class_name
from context
.
class name to remove
Removes provider
from the style providers list in context
.
a GtkStyleProvider
Restores context
state to a previous stage.
See [methodGtk
.StyleContext.save].
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Saves the context
state.
This allows temporary modifications done through
[methodGtk
.StyleContext.add_class],
[methodGtk
.StyleContext.remove_class],
[methodGtk
.StyleContext.set_state] to be quickly
reverted in one go through [methodGtk
.StyleContext.restore].
The matching call to [methodGtk
.StyleContext.restore]
must be done before GTK returns to the main loop.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Attaches context
to the given display.
The display is used to add style information from “global”
style providers, such as the display's GtkSettings
instance.
If you are using a GtkStyleContext
returned from
[methodGtk
.Widget.get_style_context], you do not need to
call this yourself.
Sets a property on an object.
the name of the property to set
the value
Sets the scale to use when getting image assets for the style.
scale
Sets the state to be used for style matching.
state to represent
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Converts the style context into a string representation.
The string representation always includes information about
the name, state, id, visibility and style classes of the CSS
node that is backing context
. Depending on the flags, more
information may be included.
This function is intended for testing and debugging of the CSS implementation in GTK. There are no guarantees about the format of the returned string, it may change.
Flags that determine what to print
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Adds a global style provider to display,
which will be used
in style construction for all GtkStyleContexts
under display
.
GTK uses this to make styling information from GtkSettings
available.
Note: If both priorities are the same, A GtkStyleProvider
added through [methodGtk
.StyleContext.add_provider] takes
precedence over another added through this function.
a GdkDisplay
a GtkStyleProvider
the priority of the style provider. The lower it is, the earlier it will be used in the style construction. Typically this will be in the range between %GTK_STYLE_PROVIDER_PRIORITY_FALLBACK and %GTK_STYLE_PROVIDER_PRIORITY_USER
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
Removes provider
from the global style providers list in display
.
a GdkDisplay
a GtkStyleProvider
GtkStyleContext
stores styling information affecting a widget.In order to construct the final style information,
GtkStyleContext
queries information from all attachedGtkStyleProviders
. Style providers can be either attached explicitly to the context through [methodGtk
.StyleContext.add_provider], or to the display through [funcGtk
.StyleContext.add_provider_for_display]. The resulting style is a combination of all providers’ information in priority order.For GTK widgets, any
GtkStyleContext
returned by [methodGtk
.Widget.get_style_context] will already have aGdkDisplay
and RTL/LTR information set. The style context will also be updated automatically if any of these settings change on the widget.Style Classes
Widgets can add style classes to their context, which can be used to associate different styles by class. The documentation for individual widgets lists which style classes it uses itself, and which style classes may be added by applications to affect their appearance.
Custom styling in UI libraries and applications
If you are developing a library with custom widgets that render differently than standard components, you may need to add a
GtkStyleProvider
yourself with the %GTK_STYLE_PROVIDER_PRIORITY_FALLBACK priority, either aGtkCssProvider
or a custom object implementing theGtkStyleProvider
interface. This way themes may still attempt to style your UI elements in a different way if needed so.If you are using custom styling on an applications, you probably want then to make your style information prevail to the theme’s, so you must use a
GtkStyleProvider
with the %GTK_STYLE_PROVIDER_PRIORITY_APPLICATION priority, keep in mind that the user settings inXDG_CONFIG_HOME/gtk-4.0/gtk.css
will still take precedence over your changes, as it uses the %GTK_STYLE_PROVIDER_PRIORITY_USER priority.