Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Get the item at position
.
If position
is greater than the number of items in list,
%NULL is
returned.
%NULL is never returned for an index that is smaller than the length of the list.
This function is meant to be used by language bindings in place of g_list_model_get_item().
See also: g_list_model_get_n_items()
the position of the item to fetch
Gets the type of the items in list
.
All items returned from g_list_model_get_item() are of the type returned by this function, or a subtype, or if the type is an interface, they are an implementation of that interface.
The item type of a #GListModel can not change during the life of the model.
Gets the number of items in list
.
Depending on the model implementation, calling this function may be
less efficient than iterating the list with increasing values for
position
until g_list_model_get_item() returns %NULL.
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Gets the set containing all currently selected items in the model.
This function may be slow, so if you are only interested in single item,
consider using [methodGtk
.SelectionModel.is_selected] or if you are only
interested in a few, consider [methodGtk
.SelectionModel.get_selection_in_range].
Gets the set of selected items in a range.
This function is an optimization for
[methodGtk
.SelectionModel.get_selection] when you are only
interested in part of the model's selected state. A common use
case is in response to the [signalGtk
.SelectionModel::selection-changed]
signal.
start of the queired range
number of items in the queried range
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Checks whether object
has a [floating][floating-ref] reference.
Checks if the given item is selected.
the position of the item to query
Emits the #GListModel::items-changed signal on list
.
This function should only be called by classes implementing
#GListModel. It has to be called after the internal representation
of list
has been updated, because handlers connected to this signal
might query the new state of the list.
Implementations must only make changes to the model (as visible to its consumer) in places that will not cause problems for that consumer. For models that are driven directly by a write API (such as #GListStore), changes can be reported in response to uses of that API. For models that represent remote data, changes should only be made from a fresh mainloop dispatch. It is particularly not permitted to make changes in response to a call to the #GListModel consumer API.
Stated another way: in general, it is assumed that code making a series of accesses to the model via the API, without returning to the mainloop, and without calling other code, will continue to view the same contents of the model.
the position at which list
changed
the number of items removed
the number of items added
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Requests to select all items in the model.
Requests to select an item in the model.
the position of the item to select
whether previously selected items should be unselected
Requests to select a range of items in the model.
the first item to select
the number of items to select
whether previously selected items should be unselected
Helper function for implementations of GtkSelectionModel
.
Call this when a the selection changes to emit the
[signalGtk
.SelectionModel::selection-changed] signal.
the first changed item
the number of changed items
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets a property on an object.
the name of the property to set
the value
Make selection changes.
This is the most advanced selection updating method that allows the most fine-grained control over selection changes. If you can, you should try the simpler versions, as implementations are more likely to implement support for those.
Requests that the selection state of all positions set in mask
be updated to the respective value in the selected
bitmask.
In pseudocode, it would look something like this:
for (i = 0; i < n_items; i++)
{
// don't change values not in the mask
if (!gtk_bitset_contains (mask, i))
continue;
if (gtk_bitset_contains (selected, i))
select_item (i);
else
unselect_item (i);
}
gtk_selection_model_selection_changed (model,
first_changed_item,
n_changed_items);
mask
and selected
must not be modified. They may refer to the
same bitset, which would mean that every item in the set should
be selected.
bitmask specifying if items should be selected or unselected
bitmask specifying which items should be updated
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
Requests to unselect all items in the model.
Requests to unselect an item in the model.
the position of the item to unselect
Requests to unselect a range of items in the model.
the first item to unselect
the number of items to unselect
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
GtkSelectionModel
is an interface that add support for selection to list models.This support is then used by widgets using list models to add the ability to select and unselect various items.
GTK provides default implementations of the most common selection modes such as [class
Gtk
.SingleSelection], so you will only need to implement this interface if you want detailed control about how selections should be handled.A
GtkSelectionModel
supports a single boolean per item indicating if an item is selected or not. This can be queried via [methodGtk
.SelectionModel.is_selected]. When the selected state of one or more items changes, the model will emit the [signalGtk
.SelectionModel::selection-changed] signal by calling the [methodGtk
.SelectionModel.selection_changed] function. The positions given in that signal may have their selection state changed, though that is not a requirement. If new items added to the model via the ::items-changed signal are selected or not is up to the implementation.Note that items added via ::items-changed may already be selected and no [Gtk.SelectionModel::selection-changed] will be emitted for them. So to track which items are selected, it is necessary to listen to both signals.
Additionally, the interface can expose functionality to select and unselect items. If these functions are implemented, GTK's list widgets will allow users to select and unselect items. However,
GtkSelectionModel
s are free to only implement them partially or not at all. In that case the widgets will not support the unimplemented operations.When selecting or unselecting is supported by a model, the return values of the selection functions do not indicate if selection or unselection happened. They are only meant to indicate complete failure, like when this mode of selecting is not supported by the model.
Selections may happen asynchronously, so the only reliable way to find out when an item was selected is to listen to the signals that indicate selection.