Gjsify LogoGjsify Logo

In addition to a single pointer and keyboard for user interface input, GDK contains support for a variety of input devices, including graphics tablets, touchscreens and multiple pointers/keyboards interacting simultaneously with the user interface. Such input devices often have additional features, such as sub-pixel positioning information and additional device-dependent information.

In order to query the device hierarchy and be aware of changes in the device hierarchy (such as virtual devices being created or removed, or physical devices being plugged or unplugged), GDK provides #GdkDeviceManager.

By default, and if the platform supports it, GDK is aware of multiple keyboard/pointer pairs and multitouch devices. This behavior can be changed by calling gdk_disable_multidevice() before gdk_display_open(). There should rarely be a need to do that though, since GDK defaults to a compatibility mode in which it will emit just one enter/leave event pair for all devices on a window. To enable per-device enter/leave events and other multi-pointer interaction features, gdk_window_set_support_multidevice() must be called on #GdkWindows (or gtk_widget_set_support_multidevice() on widgets). window. See the gdk_window_set_support_multidevice() documentation for more information.

On X11, multi-device support is implemented through XInput 2. Unless gdk_disable_multidevice() is called, the XInput 2 #GdkDeviceManager implementation will be used as the input source. Otherwise either the core or XInput 1 implementations will be used.

For simple applications that don’t have any special interest in input devices, the so-called “client pointer” provides a reasonable approximation to a simple setup with a single pointer and keyboard. The device that has been set as the client pointer can be accessed via gdk_device_manager_get_client_pointer().

Conceptually, in multidevice mode there are 2 device types. Virtual devices (or master devices) are represented by the pointer cursors and keyboard foci that are seen on the screen. Physical devices (or slave devices) represent the hardware that is controlling the virtual devices, and thus have no visible cursor on the screen.

Virtual devices are always paired, so there is a keyboard device for every pointer device. Associations between devices may be inspected through gdk_device_get_associated_device().

There may be several virtual devices, and several physical devices could be controlling each of these virtual devices. Physical devices may also be “floating”, which means they are not attached to any virtual device.

Master and slave devices

|[ carlossacarino:~$ xinput list ⎡ Virtual core pointer id=2 [master pointer (3)] ⎜ ↳ Virtual core XTEST pointer id=4 [slave pointer (2)] ⎜ ↳ Wacom ISDv4 E6 Pen stylus id=10 [slave pointer (2)] ⎜ ↳ Wacom ISDv4 E6 Finger touch id=11 [slave pointer (2)] ⎜ ↳ SynPS/2 Synaptics TouchPad id=13 [slave pointer (2)] ⎜ ↳ TPPS/2 IBM TrackPoint id=14 [slave pointer (2)] ⎜ ↳ Wacom ISDv4 E6 Pen eraser id=16 [slave pointer (2)] ⎣ Virtual core keyboard id=3 [master keyboard (2)] ↳ Virtual core XTEST keyboard id=5 [slave keyboard (3)] ↳ Power Button id=6 [slave keyboard (3)] ↳ Video Bus id=7 [slave keyboard (3)] ↳ Sleep Button id=8 [slave keyboard (3)] ↳ Integrated Camera id=9 [slave keyboard (3)] ↳ AT Translated Set 2 keyboard id=12 [slave keyboard (3)] ↳ ThinkPad Extra Buttons id=15 [slave keyboard (3)]



By default, GDK will automatically listen for events coming from all
master devices, setting the #GdkDevice for all events coming from input
devices. Events containing device information are #GDK_MOTION_NOTIFY,
#GDK_BUTTON_PRESS, #GDK_2BUTTON_PRESS, #GDK_3BUTTON_PRESS,
#GDK_BUTTON_RELEASE, #GDK_SCROLL, #GDK_KEY_PRESS, #GDK_KEY_RELEASE,
#GDK_ENTER_NOTIFY, #GDK_LEAVE_NOTIFY, #GDK_FOCUS_CHANGE,
#GDK_PROXIMITY_IN, #GDK_PROXIMITY_OUT, #GDK_DRAG_ENTER, #GDK_DRAG_LEAVE,
#GDK_DRAG_MOTION, #GDK_DRAG_STATUS, #GDK_DROP_START, #GDK_DROP_FINISHED
and #GDK_GRAB_BROKEN. When dealing with an event on a master device,
it is possible to get the source (slave) device that the event originated
from via gdk_event_get_source_device().

On a standard session, all physical devices are connected by default to
the "Virtual Core Pointer/Keyboard" master devices, hence routing all events
through these. This behavior is only modified by device grabs, where the
slave device is temporarily detached for as long as the grab is held, and
more permanently by user modifications to the device hierarchy.

On certain application specific setups, it may make sense
to detach a physical device from its master pointer, and mapping it to
an specific window. This can be achieved by the combination of
gdk_device_grab() and gdk_device_set_mode().

In order to listen for events coming from devices
other than a virtual device, gdk_window_set_device_events() must be
called. Generally, this function can be used to modify the event mask
for any given device.

Input devices may also provide additional information besides X/Y.
For example, graphics tablets may also provide pressure and X/Y tilt
information. This information is device-dependent, and may be
queried through gdk_device_get_axis(). In multidevice mode, virtual
devices will change axes in order to always represent the physical
device that is routing events through it. Whenever the physical device
changes, the #GdkDevice:n-axes property will be notified, and
gdk_device_list_axes() will return the new device axes.

Devices may also have associatedkeysor
macro buttons. Such keys can be globally set to map into normal X
keyboard events. The mapping is set using gdk_device_set_key().

In GTK+ 3.20, a new #GdkSeat object has been introduced that
supersedes #GdkDeviceManager and should be preferred in newly
written code.
@class

Hierarchy

Index

Constructors

Properties

display: Gdk.Display
gTypeInstance: TypeInstance
name: string

Methods

  • Creates a binding between source_property on source and target_property on target.

    Whenever the source_property is changed the target_property is updated using the same value. For instance:

      g_object_bind_property (action, "active", widget, "sensitive", 0);
    

    Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.

    If flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual: if target_property on target changes then the source_property on source will be updated as well.

    The binding will automatically be removed when either the source or the target instances are finalized. To remove the binding without affecting the source and the target you can just call g_object_unref() on the returned #GBinding instance.

    Removing the binding by calling g_object_unref() on it must only be done if the binding, source and target are only used from a single thread and it is clear that both source and target outlive the binding. Especially it is not safe to rely on this if the binding, source or target can be finalized from different threads. Keep another reference to the binding and use g_binding_unbind() instead to be on the safe side.

    A #GObject can have multiple bindings.

    Parameters

    • sourceProperty: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • targetProperty: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    Returns Binding

  • Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

    This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.

    Parameters

    • sourceProperty: string

      the property on source to bind

    • target: GObject.Object

      the target #GObject

    • targetProperty: string

      the property on target to bind

    • flags: BindingFlags

      flags to pass to #GBinding

    • transformTo: TClosure<any, any>

      a #GClosure wrapping the transformation function from the source to the target, or %NULL to use the default

    • transformFrom: TClosure<any, any>

      a #GClosure wrapping the transformation function from the target to the source, or %NULL to use the default

    Returns Binding

  • emit(sigName: "device-added", ...args: any[]): void
  • emit(sigName: "device-changed", ...args: any[]): void
  • emit(sigName: "device-removed", ...args: any[]): void
  • emit(sigName: "notify::display", ...args: any[]): void
  • emit(sigName: string, ...args: any[]): void
  • forceFloating(): void
  • This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

    Returns void

  • freezeNotify(): void
  • Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

    This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.

    Returns void

  • Returns the client pointer, that is, the master pointer that acts as the core pointer for this application. In X11, window managers may change this depending on the interaction pattern under the presence of several pointers.

    You should use this function seldomly, only in code that isn’t triggered by a #GdkEvent and there aren’t other means to get a meaningful #GdkDevice to operate on.

    Returns Gdk.Device

  • getData(key?: string): object
  • Gets a named field from the objects table of associations (see g_object_set_data()).

    Parameters

    • Optional key: string

      name of the key for that association

    Returns object

  • getProperty(propertyName?: string, value?: any): void
  • Gets a property of an object.

    The value can be:

    • an empty #GValue initialized by %G_VALUE_INIT, which will be automatically initialized with the expected type of the property (since GLib 2.60)
    • a #GValue initialized with the expected type of the property
    • a #GValue initialized with a type to which the expected type of the property can be transformed

    In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().

    Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.

    Parameters

    • Optional propertyName: string

      the name of the property to get

    • Optional value: any

      return location for the property value

    Returns void

  • getQdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • getv(names: string[], values: any[]): void
  • Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

    Parameters

    • names: string[]

      the names of each property to get

    • values: any[]

      the values of each property to get

    Returns void

  • isFloating(): boolean
  • notify(propertyName: string): void
  • Emits a "notify" signal for the property property_name on object.

    When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.

    Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.

    Parameters

    • propertyName: string

      the name of a property installed on the class of object.

    Returns void

  • Emits a "notify" signal for the property specified by pspec on object.

    This function omits the property name lookup, hence it is faster than g_object_notify().

    One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:

      enum
    {
    PROP_0,
    PROP_FOO,
    PROP_LAST
    };

    static GParamSpec *properties[PROP_LAST];

    static void
    my_object_class_init (MyObjectClass *klass)
    {
    properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
    0, 100,
    50,
    G_PARAM_READWRITE);
    g_object_class_install_property (gobject_class,
    PROP_FOO,
    properties[PROP_FOO]);
    }

    and then notify a change on the "foo" property with:

      g_object_notify_by_pspec (self, properties[PROP_FOO]);
    

    Parameters

    • pspec: ParamSpec

      the #GParamSpec of a property installed on the class of object.

    Returns void

  • Increases the reference count of object.

    Since GLib 2.56, if GLIB_VERSION_MAX_ALLOWED is 2.56 or greater, the type of object will be propagated to the return type (using the GCC typeof() extension), so any casting the caller needs to do on the return type must be explicit.

    Returns GObject.Object

  • Increase the reference count of object, and possibly remove the [floating][floating-ref] reference, if object has a floating reference.

    In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.

    Since GLib 2.56, the type of object will be propagated to the return type under the same conditions as for g_object_ref().

    Returns GObject.Object

  • runDispose(): void
  • Releases all references to other objects. This can be used to break reference cycles.

    This function should only be called from object system implementations.

    Returns void

  • setData(key: string, data?: object): void
  • Each object carries around a table of associations from strings to pointers. This function lets you set an association.

    If the object already had an association with that name, the old association will be destroyed.

    Internally, the key is converted to a #GQuark using g_quark_from_string(). This means a copy of key is kept permanently (even after object has been finalized) — so it is recommended to only use a small, bounded set of values for key in your program, to avoid the #GQuark storage growing unbounded.

    Parameters

    • key: string

      name of the key

    • Optional data: object

      data to associate with that key

    Returns void

  • setProperty(propertyName: string, value?: any): void
  • Sets a property on an object.

    Parameters

    • propertyName: string

      the name of the property to set

    • Optional value: any

      the value

    Returns void

  • stealData(key?: string): object
  • Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

    Parameters

    • Optional key: string

      name of the key

    Returns object

  • stealQdata(quark: number): object
  • This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

    void
    object_add_to_user_list (GObject *object,
    const gchar *new_string)
    {
    // the quark, naming the object data
    GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
    // retrieve the old string list
    GList *list = g_object_steal_qdata (object, quark_string_list);

    // prepend new string
    list = g_list_prepend (list, g_strdup (new_string));
    // this changed 'list', so we need to set it again
    g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
    }
    static void
    free_string_list (gpointer data)
    {
    GList *node, *list = data;

    for (node = list; node; node = node->next)
    g_free (node->data);
    g_list_free (list);
    }

    Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().

    Parameters

    • quark: number

      A #GQuark, naming the user data pointer

    Returns object

  • thawNotify(): void
  • Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

    Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.

    It is an error to call this function when the freeze count is zero.

    Returns void

  • unref(): void
  • Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

    If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.

    Returns void

  • watchClosure(closure: TClosure<any, any>): void
  • This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

    Parameters

    • closure: TClosure<any, any>

      #GClosure to watch

    Returns void

  • compatControl(what: number, data: object): number
  • Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    • propertyName: string

      name of a property to look up.

    Returns ParamSpec

  • Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

    This function is meant to be called from the interface's default vtable initialization function (the class_init member of #GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface.

    If pspec is a floating reference, it will be consumed.

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface.

    • pspec: ParamSpec

      the #GParamSpec for the new property

    Returns void

  • Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

    Parameters

    • gIface: TypeInterface

      any interface vtable for the interface, or the default vtable for the interface

    Returns ParamSpec[]

  • Creates a new instance of a #GObject subtype and sets its properties.

    Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.

    Parameters

    • objectType: GType<unknown>

      the type id of the #GObject subtype to instantiate

    • parameters: GObject.Parameter[]

      an array of #GParameter

    Returns GObject.Object

Legend

  • Module
  • Object literal
  • Variable
  • Function
  • Function with type parameter
  • Index signature
  • Type alias
  • Type alias with type parameter
  • Enumeration
  • Enumeration member
  • Property
  • Method
  • Interface
  • Interface with type parameter
  • Constructor
  • Property
  • Method
  • Index signature
  • Class
  • Class with type parameter
  • Constructor
  • Property
  • Method
  • Accessor
  • Index signature
  • Inherited constructor
  • Inherited property
  • Inherited method
  • Inherited accessor
  • Protected property
  • Protected method
  • Protected accessor
  • Private property
  • Private method
  • Private accessor
  • Static property
  • Static method