Returns a new string containing the text in string_to_expand
with
references and escape sequences expanded. References refer to the last
match done with string
against regex
and have the same syntax used by
g_regex_replace().
The string_to_expand
must be UTF-8 encoded even if %G_REGEX_RAW was
passed to g_regex_new().
The backreferences are extracted from the string passed to the match function, so you cannot call this function after freeing the string.
match_info
may be %NULL in which case string_to_expand
must not
contain references. For instance "foo\n" does not refer to an actual
pattern and '\n' merely will be replaced with \n character,
while to expand "\0" (whole match) one needs the result of a match.
Use g_regex_check_replacement() to find out whether string_to_expand
contains references.
the string to expand
Retrieves the text matching the match_num'
th capturing
parentheses. 0 is the full text of the match, 1 is the first paren
set, 2 the second, and so on.
If match_num
is a valid sub pattern but it didn't match anything
(e.g. sub pattern 1, matching "b" against "(a)?b") then an empty
string is returned.
If the match was obtained using the DFA algorithm, that is using g_regex_match_all() or g_regex_match_all_full(), the retrieved string is not that of a set of parentheses but that of a matched substring. Substrings are matched in reverse order of length, so 0 is the longest match.
The string is fetched from the string passed to the match function, so you cannot call this function after freeing the string.
number of the sub expression
Bundles up pointers to each of the matching substrings from a match and stores them in an array of gchar pointers. The first element in the returned array is the match number 0, i.e. the entire matched text.
If a sub pattern didn't match anything (e.g. sub pattern 1, matching "b" against "(a)?b") then an empty string is inserted.
If the last match was obtained using the DFA algorithm, that is using g_regex_match_all() or g_regex_match_all_full(), the retrieved strings are not that matched by sets of parentheses but that of the matched substring. Substrings are matched in reverse order of length, so the first one is the longest match.
The strings are fetched from the string passed to the match function, so you cannot call this function after freeing the string.
Retrieves the text matching the capturing parentheses named name
.
If name
is a valid sub pattern name but it didn't match anything
(e.g. sub pattern "X", matching "b" against "(?P
The string is fetched from the string passed to the match function, so you cannot call this function after freeing the string.
name of the subexpression
Retrieves the position in bytes of the capturing parentheses named name
.
If name
is a valid sub pattern name but it didn't match anything
(e.g. sub pattern "X", matching "b" against "(?Pstart_pos
and end_pos
are set to -1 and %TRUE is returned.
name of the subexpression
Retrieves the position in bytes of the match_num'
th capturing
parentheses. 0 is the full text of the match, 1 is the first
paren set, 2 the second, and so on.
If match_num
is a valid sub pattern but it didn't match anything
(e.g. sub pattern 1, matching "b" against "(a)?b") then start_pos
and end_pos
are set to -1 and %TRUE is returned.
If the match was obtained using the DFA algorithm, that is using g_regex_match_all() or g_regex_match_all_full(), the retrieved position is not that of a set of parentheses but that of a matched substring. Substrings are matched in reverse order of length, so 0 is the longest match.
number of the sub expression
If match_info
is not %NULL, calls g_match_info_unref(); otherwise does
nothing.
Retrieves the number of matched substrings (including substring 0, that is the whole matched text), so 1 is returned if the pattern has no substrings in it and 0 is returned if the match failed.
If the last match was obtained using the DFA algorithm, that is using g_regex_match_all() or g_regex_match_all_full(), the retrieved count is not that of the number of capturing parentheses but that of the number of matched substrings.
Returns the string searched with match_info
. This is the
string passed to g_regex_match() or g_regex_replace() so
you may not free it before calling this function.
Usually if the string passed to g_regex_match*() matches as far as it goes, but is too short to match the entire pattern, %FALSE is returned. There are circumstances where it might be helpful to distinguish this case from other cases in which there is no match.
Consider, for example, an application where a human is required to type in data for a field with specific formatting requirements. An example might be a date in the form ddmmmyy, defined by the pattern "^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$". If the application sees the user’s keystrokes one by one, and can check that what has been typed so far is potentially valid, it is able to raise an error as soon as a mistake is made.
GRegex supports the concept of partial matching by means of the %G_REGEX_MATCH_PARTIAL_SOFT and %G_REGEX_MATCH_PARTIAL_HARD flags. When they are used, the return code for g_regex_match() or g_regex_match_full() is, as usual, %TRUE for a complete match, %FALSE otherwise. But, when these functions return %FALSE, you can check if the match was partial calling g_match_info_is_partial_match().
The difference between %G_REGEX_MATCH_PARTIAL_SOFT and %G_REGEX_MATCH_PARTIAL_HARD is that when a partial match is encountered with %G_REGEX_MATCH_PARTIAL_SOFT, matching continues to search for a possible complete match, while with %G_REGEX_MATCH_PARTIAL_HARD matching stops at the partial match. When both %G_REGEX_MATCH_PARTIAL_SOFT and %G_REGEX_MATCH_PARTIAL_HARD are set, the latter takes precedence.
There were formerly some restrictions on the pattern for partial matching. The restrictions no longer apply.
See pcrepartial(3) for more information on partial matching.
Returns whether the previous match operation succeeded.
Scans for the next match using the same parameters of the previous
call to g_regex_match_full() or g_regex_match() that returned
match_info
.
The match is done on the string passed to the match function, so you cannot free it before calling this function.
Increases reference count of match_info
by 1.
Decreases reference count of match_info
by 1. When reference count drops
to zero, it frees all the memory associated with the match_info structure.
A GMatchInfo is an opaque struct used to return information about matches.