The currently active alphabet.
The value is a %NULL terminated array of strings, each string is suitable to display a specific letter in the active alphabet.
Indexes from this array can later be used with e_book_client_cursor_set_alphabetic_index().
This property will automatically change if the active locale of the addressbook server changes.
Property change notifications are guaranteed to be delivered in the #GMainContext which was the thread default context at cursor creation time.
The #EBookClient which this cursor was created for
The #GDBusConnection to the addressbook server.
The #GMainContext in which the #EBookClient created this cursor.
The D-Bus object path to find the server side cursor object.
The current cursor position in the cursor's result list.
More specifically, the cursor position is defined as the number of contacts leading up to the current cursor position, inclusive of the current cursor position.
If the position value is 0, then the cursor is positioned before the contact list in the symbolic %E_BOOK_CURSOR_ORIGIN_BEGIN position. If the position value is greater than #EBookClientCursor:total, this indicates that the cursor is positioned after the contact list in the symbolic %E_BOOK_CURSOR_ORIGIN_END position.
Property change notifications are guaranteed to be delivered in the #GMainContext which was the thread default context at cursor creation time.
The #EContactField names to sort this cursor with
The total number of contacts which satisfy the cursor's query.
Property change notifications are guaranteed to be delivered in the #GMainContext which was the thread default context at cursor creation time.
Creates a binding between source_property
on source
and target_property
on target
.
Whenever the source_property
is changed the target_property
is
updated using the same value. For instance:
g_object_bind_property (action, "active", widget, "sensitive", 0);
Will result in the "sensitive" property of the widget #GObject instance to be updated with the same value of the "active" property of the action #GObject instance.
If flags
contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
if target_property
on target
changes then the source_property
on source
will be updated as well.
The binding will automatically be removed when either the source
or the
target
instances are finalized. To remove the binding without affecting the
source
and the target
you can just call g_object_unref() on the returned
#GBinding instance.
Removing the binding by calling g_object_unref() on it must only be done if
the binding, source
and target
are only used from a single thread and it
is clear that both source
and target
outlive the binding. Especially it
is not safe to rely on this if the binding, source
or target
can be
finalized from different threads. Keep another reference to the binding and
use g_binding_unbind() instead to be on the safe side.
A #GObject can have multiple bindings.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
Creates a binding between source_property
on source
and target_property
on target,
allowing you to set the transformation functions to be used by
the binding.
This function is the language bindings friendly version of g_object_bind_property_full(), using #GClosures instead of function pointers.
the property on source
to bind
the target #GObject
the property on target
to bind
flags to pass to #GBinding
a #GClosure wrapping the transformation function from the source
to the target,
or %NULL to use the default
a #GClosure wrapping the transformation function from the target
to the source,
or %NULL to use the default
This function is intended for #GObject implementations to re-enforce a [floating][floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on object
. If the freeze count is
non-zero, the emission of "notify" signals on object
is
stopped. The signals are queued until the freeze count is decreased
to zero. Duplicate notifications are squashed so that at most one
#GObject::notify signal is emitted for each property modified while the
object is frozen.
This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Fetches the array of displayable labels for the active alphabet.
The active alphabet is based on the current locale configuration of the addressbook, and can be a different alphabet for locales requiring non-Latin language scripts. These UTF-8 labels are appropriate to display in a user interface to represent the alphabetic position of the cursor in the user's native alphabet.
The underflow,
inflow
and overflow
parameters allow one to observe which
indexes Evolution Data Server is using to store words which sort outside
of the alphabet, for instance words from foreign language scripts and
words which start with numeric characters, or other types of character.
While the underflow
and overflow
are for words which sort below or
above the active alphabets, the inflow
index is for words which sort
in between multiple concurrently active alphabets. The active alphabet
array might contain more than one alphabet for locales where it is
very common or expected to have names in Latin script as well as names
in another script.
Checks which alphabetic index contact
would be sorted
into according to cursor
.
So long as the active #EBookClientCursor:alphabet does not change, the returned index will be a valid position in the array of labels returned by e_book_client_cursor_get_alphabet().
If the index returned by this function is needed for any extended period of time, it should be recalculated whenever the #EBookClientCursor:alphabet changes.
the #EContact to check
Gets a named field from the objects table of associations (see g_object_set_data()).
name of the key for that association
Fetches the number of contacts leading up to the current cursor position, inclusive of the current cursor position.
The position value can be anywhere from 0 to the total number of contacts plus one. A value of 0 indicates that the cursor is positioned before the contact list in the symbolic %E_BOOK_CURSOR_ORIGIN_BEGIN state. If the position is greater than the total, as returned by e_book_client_cursor_get_total(), then the cursor is positioned after the last contact in the symbolic %E_BOOK_CURSOR_ORIGIN_END position.
Gets a property of an object.
The value
can be:
In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset().
Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
the name of the property to get
return location for the property value
This function gets back user data pointers stored via g_object_set_qdata().
A #GQuark, naming the user data pointer
Fetches the total number of contacts in the addressbook
which match cursor'
s query
Gets n_properties
properties for an object
.
Obtained properties will be set to values
. All properties must be valid.
Warnings will be emitted and undefined behaviour may result if invalid
properties are passed in.
the names of each property to get
the values of each property to get
Initializes the object implementing the interface.
This method is intended for language bindings. If writing in C, g_initable_new() should typically be used instead.
The object must be initialized before any real use after initial construction, either with this function or g_async_initable_init_async().
Implementations may also support cancellation. If cancellable
is not %NULL,
then initialization can be cancelled by triggering the cancellable object
from another thread. If the operation was cancelled, the error
%G_IO_ERROR_CANCELLED will be returned. If cancellable
is not %NULL and
the object doesn't support cancellable initialization the error
%G_IO_ERROR_NOT_SUPPORTED will be returned.
If the object is not initialized, or initialization returns with an error, then all operations on the object except g_object_ref() and g_object_unref() are considered to be invalid, and have undefined behaviour. See the [introduction][ginitable] for more details.
Callers should not assume that a class which implements #GInitable can be initialized multiple times, unless the class explicitly documents itself as supporting this. Generally, a class’ implementation of init() can assume (and assert) that it will only be called once. Previously, this documentation recommended all #GInitable implementations should be idempotent; that recommendation was relaxed in GLib 2.54.
If a class explicitly supports being initialized multiple times, it is recommended that the method is idempotent: multiple calls with the same arguments should return the same results. Only the first call initializes the object; further calls return the result of the first call.
One reason why a class might need to support idempotent initialization is if it is designed to be used via the singleton pattern, with a #GObjectClass.constructor that sometimes returns an existing instance. In this pattern, a caller would expect to be able to call g_initable_init() on the result of g_object_new(), regardless of whether it is in fact a new instance.
optional #GCancellable object, %NULL to ignore.
Checks whether object
has a [floating][floating-ref] reference.
Emits a "notify" signal for the property property_name
on object
.
When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Note that emission of the notify signal may be blocked with g_object_freeze_notify(). In this case, the signal emissions are queued and will be emitted (in reverse order) when g_object_thaw_notify() is called.
the name of a property installed on the class of object
.
Emits a "notify" signal for the property specified by pspec
on object
.
This function omits the property name lookup, hence it is faster than g_object_notify().
One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with g_object_class_install_property() inside a static array, e.g.:
enum
{
PROP_0,
PROP_FOO,
PROP_LAST
};
static GParamSpec *properties[PROP_LAST];
static void
my_object_class_init (MyObjectClass *klass)
{
properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
0, 100,
50,
G_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_FOO,
properties[PROP_FOO]);
}
and then notify a change on the "foo" property with:
g_object_notify_by_pspec (self, properties[PROP_FOO]);
the #GParamSpec of a property installed on the class of object
.
Returns the #EBookClientCursor:client associated with cursor
.
The returned #EBookClient is referenced because the cursor does not keep a strong reference to the client.
Unreference the #EBookClient with g_object_unref() when finished with it.
Increase the reference count of object,
and possibly remove the
[floating][floating-ref] reference, if object
has a floating reference.
In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.
Since GLib 2.56, the type of object
will be propagated to the return type
under the same conditions as for g_object_ref().
Releases all references to other objects. This can be used to break reference cycles.
This function should only be called from object system implementations.
Sets the current cursor position to point to an Alphabetic Index.
See: e_book_client_cursor_set_alphabetic_index_sync().
This asynchronous call is completed with a call to
e_book_client_cursor_set_alphabetic_index_finish() from the specified callback
.
the alphabetic index
a #GCancellable to optionally cancel this operation while in progress
callback to call when a result is ready
Completes an asynchronous call initiated by e_book_client_cursor_set_alphabetic_index().
a #GAsyncResult
Sets the cursor to point to an Alphabetic Index.
After setting the alphabetic index, for example the index for letter 'E', then further calls to e_book_client_cursor_step() will return results starting with the letter 'E' (or results starting with the last result in 'D' when navigating through cursor results in reverse).
The passed index must be a valid index into the alphabet parameters returned by e_book_client_cursor_get_alphabet().
If this method is called from the same thread context in which the cursor was created, then the updates to the #EBookClientCursor:position property are guaranteed to be delivered synchronously upon successful completion of moving the cursor. Otherwise, notifications will be delivered asynchronously in the cursor's original thread context.
If this method completes with an %E_CLIENT_ERROR_OUT_OF_SYNC error, it is an indication that the addressbook has been set into a new locale and it would be unsafe to set the alphabetic index at this time. If you receive an out of sync error from this method, then you should wait until an #EBookClientCursor:alphabet property change notification is delivered and then proceed to load the new alphabet before trying to set any alphabetic index.
the alphabetic index
a #GCancellable to optionally cancel this operation while in progress
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
If the object already had an association with that name, the old association will be destroyed.
Internally, the key
is converted to a #GQuark using g_quark_from_string().
This means a copy of key
is kept permanently (even after object
has been
finalized) — so it is recommended to only use a small, bounded set of values
for key
in your program, to avoid the #GQuark storage growing unbounded.
name of the key
data to associate with that key
Sets a property on an object.
the name of the property to set
the value
Sets the Search Expression for the cursor.
See: e_book_client_cursor_set_sexp_sync().
This asynchronous call is completed with a call to
e_book_client_cursor_set_sexp_finish() from the specified callback
.
the new search expression for cursor
a #GCancellable to optionally cancel this operation while in progress
callback to call when a result is ready
Completes an asynchronous call initiated by e_book_client_cursor_set_sexp(), reporting whether the new search expression was accepted.
a #GAsyncResult
Sets the Search Expression for the cursor.
A side effect of setting the search expression is that the
position and total properties will be updated.If this method is called from the same thread context in which the cursor was created, then the updates to the #EBookClientCursor:position and #EBookClientCursor:total properties are guaranteed to be delivered synchronously upon successful completion of setting the search expression. Otherwise, notifications will be delivered asynchronously in the cursor's original thread context.
If the backend does not support the given search expression, an %E_CLIENT_ERROR_INVALID_QUERY error will be set.
the new search expression for cursor
a #GCancellable to optionally cancel this operation while in progress
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
name of the key
This function gets back user data pointers stored via
g_object_set_qdata() and removes the data
from object
without invoking its destroy() function (if any was
set).
Usually, calling this function is only required to update
user data pointers with a destroy notifier, for example:
void
object_add_to_user_list (GObject *object,
const gchar *new_string)
{
// the quark, naming the object data
GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
// retrieve the old string list
GList *list = g_object_steal_qdata (object, quark_string_list);
// prepend new string
list = g_list_prepend (list, g_strdup (new_string));
// this changed 'list', so we need to set it again
g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
}
static void
free_string_list (gpointer data)
{
GList *node, *list = data;
for (node = list; node; node = node->next)
g_free (node->data);
g_list_free (list);
}
Using g_object_get_qdata() in the above example, instead of g_object_steal_qdata() would have left the destroy function set, and thus the partial string list would have been freed upon g_object_set_qdata_full().
A #GQuark, naming the user data pointer
See: e_book_client_cursor_step_sync().
This asynchronous call is completed with a call to
e_book_client_cursor_step_finish() from the specified callback
.
The #EBookCursorStepFlags for this step
The #EBookCursorOrigin from whence to step
a positive or negative amount of contacts to try and fetch
a #GCancellable to optionally cancel this operation while in progress
callback to call when a result is ready
Completes an asynchronous call initiated by e_book_client_cursor_step(), fetching any contacts which might have been returned by the call.
a #GAsyncResult
If count
is negative, then the cursor will move backwards.
If cursor
reaches the beginning or end of the query results, then the
returned list might not contain the amount of desired contacts, or might
return no results if the cursor currently points to the last contact.
Reaching the end of the list is not considered an error condition. Attempts
to step beyond the end of the list after having reached the end of the list
will however trigger an %E_CLIENT_ERROR_QUERY_REFUSED error.
If %E_BOOK_CURSOR_STEP_FETCH is specified in flags,
a pointer to
a %NULL #GSList pointer should be provided for the results
parameter.
If %E_BOOK_CURSOR_STEP_MOVE is specified in flags,
then the cursor's
state will be modified and the position
property will be updated as a result.
If this method is called from the same thread context in which the cursor was created, then the updates to the #EBookClientCursor:position property are guaranteed to be delivered synchronously upon successful completion of moving the cursor. Otherwise, notifications will be delivered asynchronously in the cursor's original thread context.
If this method completes with an %E_CLIENT_ERROR_OUT_OF_SYNC error, it is an indication that the addressbook has been modified and it would be unsafe to move the cursor at this time. Any %E_CLIENT_ERROR_OUT_OF_SYNC error is guaranteed to be followed by an #EBookClientCursor::refresh signal at which point any content should be reloaded.
The #EBookCursorStepFlags for this step
The #EBookCursorOrigin from whence to step
a positive or negative amount of contacts to try and fetch
a #GCancellable to optionally cancel this operation while in progress
Reverts the effect of a previous call to
g_object_freeze_notify(). The freeze count is decreased on object
and when it reaches zero, queued "notify" signals are emitted.
Duplicate notifications for each property are squashed so that at most one #GObject::notify signal is emitted for each property, in the reverse order in which they have been queued.
It is an error to call this function when the freeze count is zero.
Decreases the reference count of object
. When its reference count
drops to 0, the object is finalized (i.e. its memory is freed).
If the pointer to the #GObject may be reused in future (for example, if it is an instance variable of another object), it is recommended to clear the pointer to %NULL rather than retain a dangling pointer to a potentially invalid #GObject instance. Use g_clear_object() for this.
This function essentially limits the life time of the closure
to
the life time of the object. That is, when the object is finalized,
the closure
is invalidated by calling g_closure_invalidate() on
it, in order to prevent invocations of the closure with a finalized
(nonexisting) object. Also, g_object_ref() and g_object_unref() are
added as marshal guards to the closure,
to ensure that an extra
reference count is held on object
during invocation of the
closure
. Usually, this function will be called on closures that
use this object
as closure data.
#GClosure to watch
Find the #GParamSpec with the given name for an
interface. Generally, the interface vtable passed in as g_iface
will be the default vtable from g_type_default_interface_ref(), or,
if you know the interface has already been loaded,
g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
name of a property to look up.
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
This function is meant to be called from the interface's default
vtable initialization function (the class_init
member of
#GTypeInfo.) It must not be called after after class_init
has
been called for any object types implementing this interface.
If pspec
is a floating reference, it will be consumed.
any interface vtable for the interface, or the default vtable for the interface.
the #GParamSpec for the new property
Lists the properties of an interface.Generally, the interface
vtable passed in as g_iface
will be the default vtable from
g_type_default_interface_ref(), or, if you know the interface has
already been loaded, g_type_default_interface_peek().
any interface vtable for the interface, or the default vtable for the interface
Creates a new instance of a #GObject subtype and sets its properties.
Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY) which are not explicitly specified are set to their default values.
the type id of the #GObject subtype to instantiate
an array of #GParameter
Contains only private data.